Federated Graph Learning

Nhu Ngoc Hoang
Barcelona School of Informatics
Universitat Politécnica de Catalunya
Barcelona, Spain
nhu.ngoc.hoang @estudiantat.upc.edu

I. INTRODUCTION

In recent years, graph neural networks have emerged as a
powerful paradigm for learning from graph-structured data,
achieving state-of-the-art results across many domains such
as biomedical and healthcare, recommendation, social net-
works, finance, etc. Graph neural networks typically require
centralized access to large graph datasets, which is becoming
increasingly infeasible due to privacy regulations such as the
European Union’s General Data Protection Regulation [1],
data ownership concerns and policies, as well as the sheer
volume of data distributed across multiple organizations. Fed-
erated graph learning addresses this challenging by combining
graph neural networks with federated learning, another pow-
erful paradigm that enables collaborative training of machine
learning models without sharing raw data, upholding data
privacy and ownership.

Unlike federated learning for tabular, image, or textual data,
the graph-structured nature of the domain introduces multiple
novel challenges, including:

o Data and structural heterogeneity: Local subgraphs
vary greatly in terms of feature distributions, graph topol-
ogy, degree distribution, and homophily, causing standard
aggregation methods in traditional federated learning to
degrade global convergence.

o Missing cross-client connectivity: One of the core mech-
anisms of graph neural networks is the message passing
among connected nodes. In federated graph learning,
message propagation is truncated at client boundaries,
leading to biased or under-informed node representations.

o Graph-level privacy risks: Beyond node attributes, edge
existence and subgraph membership may reveal sensi-
tive information, further necessitating privacy-preserving
techniques.

This paper presents a state-of-the-art review of federated graph
learning by categorizing and analyzing existing body of liter-
ature across key dimensions corresponding to the aforemen-
tioned core challenges. Domain applications and open research
directions are also discussed, highlighting both progress and
gaps pointing to potential future development in this high-
impact area.

The rest of this paper is organized as follows. Section II pro-
vides a general formulation of the domain, setting up contexts
for federated learning, graph neural networks, as well as feder-
ated graph learning. Due to the variances in graph models and

data partitioning methods, federated graph learning problems
can be categorized according to multiple dimensions. Section
IIT addresses this multi-dimensional nature of taxonomy by
discussing some of the major categorizations of federated
graph learning. Section IV presents the three core challenges
of federated graph learning while Section V discusses more
in-depth the various approaches and architectures that have
been developed to tackle the core challenges. Section VI
discusses some of the areas in which federated graph learning
has been utilized with promising results, while Section VII
presents the remaining open challenges and directions for
future development. Finally, Section VIII concludes the paper.

II. PROBLEM FORMULATION
A. Federated learning

Federated learning, first coined in 2017 [2], is a machine
learning paradigm where multiple clients collaboratively train
a model without exchanging raw data, under the orchestration
of a central coordinating server. Clients participating in feder-
ated learning can be IoT devices, personal devices, or private
servers of different organizations. The collaborative and de-
centralized nature of federated learning facilitates compliance
with data privacy regulations and policies.

[2] formulates federated learning as including multiple
rounds of updates conducted by a set of M clients C =
{c1,¢2,...,car} where each client ¢, owns a private dataset
Pr = {(x1,91), (X2,¥2), .., (XN, YN, )} where N is the
number of samples in this dataset. The total number of data
samples across all clients is then defined as N = Z,I:I:l Nk.

Similar to the traditional machine learning configuration,
the goal of federated learning is to optimize some global
objective function. Let fj, denote the loss function on a client
cr parameterized by w and Fj), the average loss over the
entire private dataset of c;. Federated learning can then be
formulated as the optimization of the loss function across all
clients while keeping the data private to each client:
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Federated learning involves multiple rounds of updates
during which model parameters are transmitted between the
central server and clients. At round r, the server selects
a subset of clients among C to participate in that round.



Then, the server sends to each selected client the current
parameters of the global model w”. Client ¢ then conducts
local computations to update its set of parameters wj, using
its private dataset P, via some methods such as stochastic
gradient descent [3]. The updated parameters from the clients
are communicated back to the server and used to obtain the
updated global parameters w™t! which will be used for the
next update round.

B. Graph neural networks

Graphs have increasingly gained traction as a data format
suitable for modeling complex data across many real-world
domains such as bioinformatics, healthcare, transportation,
recommendation systems, etc. [3]. Graph neural networks have
naturally emerged as powerful models for handling graph data
[4]. Graph neural networks are a class of deep learning model
designed to encode both structural and feature-based informa-
tion in graphs via neighborhood propagation. Their ability to
encode such rich contextual and topological information leads
to high performance in tasks on the graph level (e.g. graph
property prediction), node level (e.g. node classification), or
edge level (e.g. missing edge prediction).

Graph neural networks produce embeddings of graph at-
tributes (node embeddings, edge embeddings, etc.) given a
graph and its associated node features as inputs. A graph
G = (V, E) consists of a set of nodes (vertices) V' and a set
of edges E. The node features can be represented as a matrix
X € RIVIXds where d, denotes the dimension of the feature
vector associated with a node. Graph neural networks update
the embedding of a given node through two main steps:

1) Aggregating information from its neighbors: ag,l) =

AGGREGATEY ({h{ ™" |u € N'(v)}) where h! is the
representation of node v at layer [; hgo) = X, (the
initial raw features of node v) and N (v) gives the set of
neighbors of node v. There are multiple options for the
AGGREGATE function such as mean, weighted average,
min/max pooling.

2) Updating the node’s
UPDATE® (R{'™V, o)

Many variants and models of graph neural networks have
been developed over the year, with some of the most promi-
nent being graph convolutional networks [5], graph attention
networks [6], and GraphSAGE [7].
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C. Federated graph learning

Combining graph neural networks with the federated learn-
ing paradigm, federated graph learning facilitates the training
of graph neural networks across multiple data-owning clients
without sharing raw graphs, ensuring decentralization and
privacy of data. Federated graph learning has been utilized on
a wide range of graph types (e.g. property graphs, knowledge
graphs, user-item graphs) to bring about new approaches in
many domains, including bioinformatics and drug discovery,
social network classification, or recommendation systems.

III. TAXONOMY

A. Data partitioning taxonomy

[8] puts forth a categorization of federated graph learning
from the perspective of the distribution of graph data among
clients in a federated learning settings: inter-graph feder-
ated learning, intra-graph federated learning, and graph-
structured federated learning.

1) Inter-graph federated learning: In this category, the
decentralized data belonging to individual clients are graph
data, where each client owns a set of whole graphs. The
field where inter-graph federated learning is most common
is the biomedical field for tasks such as molecular property
prediction. In this example, a graph can be constructed to
represent a molecule with a set of atoms (nodes) and a set
of chemical bonds (edges), a client can be a pharmaceuti-
cal company which can owns multiple confidential molecule
structures. Federated graph learning can boost cross-company
collaboration while still maintaining each company’s privacy
to their own data.

2) Intra-graph federated learning: In this settings, it is
assumed that there exists a global graph and each client owns a
part of it. Intra-graph federated learning is further divided into
horizontal and vertical categories based on the specific nature
of the partitioning, which will be discussed shortly. Under this
settings, it can also be assumed that there exist some adjacent
nodes in the global graph that are distributed to different clients
in the system, and the edges connecting them are subsequently
lost. This leads to the removal of potentially critical cross-
client information, which will be further discussed in Sections
IV and VL

3) Graph-structured federated learning: While the previ-
ous two types assume some graph-structured nature on the data
level, this category assumes the graph-structured nature of the
system topology, that is, participating clients are considered
nodes and the relationships among them are considered edges
comprising a global graph. On the data level, the clients
can own graph or non-graph data. In this settings, the server
utilizes graph neural networks for the aggregation of updates
conducted at the local models of clients.

B. Intra-graph taxonomy

The the intra-graph federated learning settings, where some
global graph is assumed to be distributed among the clients,
can be further divided into the horizontal and vertical settings.

1) Horizontal federated graph learning: Under this set-
tings, subgraphs owned by different clients overlap in the
feature space but differ in the ID space. In other words, nodes
belonging to different clients have the same set of features
but the nodes themselves are distinct from client to client. An
example of this can be a scenario in which a university has
a unified graph schema for storing student information, but
the data is distributed among different campuses where each
campus owns only the data of students enrolled at that campus.



2) Vertical federated graph learning: On the contrary,
under this settings, subgraphs of different clients overlap in
the ID space but differ in the feature space. In other words,
clients hold disjoint features for heavily overlapping nodes.
An example scenario is one where patients goes to different
hospitals for different checkups, so the same patients can exist
in multiple subgraphs with different hospital-specific features.

Figure 1 visualizes the data partitioning taxonomy with
the intra-graph federated learning configuration expanded into
horizontal and vertical federated graph learning. In the hor-
izontal intra-graph settings, dashed edges connecting nodes
from different clients represent cross-client latent edges that
are missing when data is distrbuted to individual clients. In
the vertical intra-graph settings, dashed edges connect nodes
with overlapping IDs that belong to different clients.
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Fig. 1. Data partitioning taxonomy and intra-graph taxonomy

C. Centralization taxonomy

[4] puts forth an additional categorization based on the
communication patterns of entities participating in the training:
centralized and decentralized federated graph learning. The
centralized settings includes the existence of a central server
which coordinates the training among the clients, while the
decentralized settings assumes client-to-client communication
for joining training the model without the intervention of a
Server.

IV. CORE CHALLENGES

This section discusses the core challenges in federated graph
learning within the scope of the intra-graph configuration,
where clients own varying subgraphs of a presumed global
graph. If some approach targets the graph-structured federated
learning settings, it will explicitly be said so.

A. Data heterogeneity

A core challenge of federated learning in general arising
from the intra-graph settings is the unbalanced and non-IID
(identically and independently distributed) partitioning of data
across the clients [9]. The heterogeneous and imbalanced na-
ture of data in federated learning may manifest in many forms
of deviation, including in terms of imbalanced features, labels,
volumes, or other attributes of data samples. For federated
graph learning, the heterogeneity originates from not only the
data (feature heterogeneity), but also the structural information
of subgraphs owned by different clients. Subgraphs differ not
only in size but also in topology e.g. node degrees, clustering
coefficients, connectedness, and homophily levels which vary
markedly across clients.

The two sources of heterogeneity together lead to greatly
divergent gradients obtained through the local learning process
of different clients and overall degrade the global model [3].
The feature heterogeneity complicates the process of learning
the message passing functions in the clients (which are es-
sential for the update mechanism of graph neural networks, as
previously discussed) while the structure heterogeneity further
hampers the emergence of coherent global graph representa-
tions [10]. As a result, standard federated learning mechanism
fails to converge robustly in the graph settings, necessitating
specialized mechanisms to align both feature and structural
learning across clients.

B. Missing cross-client information

As clients own subgraphs of the global graph, a common
scenario that can arise is one where some nodes in one client
are connected via direct edges with other nodes belonging to a
different client. Due to the data privacy requisite underpinning
federated learning, the learning process at a client can only
aggregate information from a node’s neighbors that are located
at the same client, excluding cross-client edges. Consequently,
node representations are computed from an incomplete neigh-
borhood, introducing biased and suboptimal embeddings that
degrade downstream performance [3]. Specifically, the missing
neighbor information issue can manifest in various forms of
degraded performances, such as impeded message passing for
graph neural networks, truncated degree distribution in local
subgraphs, or amplified biases for minority label class. This
challenge draws a distinction between federated graph learning
and the conventional federated learning settings with non-
graph data.

C. Privacy and structural confidentiality

One of the fundamental values of federated learning is
privacy on the basis of data minimization and decentralization.
Participating clients own confidential raw datasets that are not
transmitted or shared during the entirety of the training pro-
cess, rather, only model updates (gradients) are communicated
to the server. Additionally, the gradients are only kept provi-
sionally by the server for incremental updates to the global
model [9]. Such principles provide the baseline privacy guar-
antee for clients participating in federated learning compared



to, for example, centralized training. However, without further
formal privacy-preserving techniques and mechanisms beyond
this baseline, federated learning systems remain vulnerable to
sophisticated privacy leakages and attacks, namely inference
attacks, reconstruction attacks, inversion attacks, among others
[11].

Federated graph learning introduces unique privacy risks
due to the combination of graph-structured data vulnerabilities
and distributed training dynamics. The following primary
threat models emerge from the interaction between clients and
servers.

1) Server-side threats:

o Honest-but-curious servers: This category represents a
seemingly non-intrusive group of threats originating from
passively observing servers which, while adhering to
the federated learning protocols [9], have the capacity
to analyze aggregated gradients to infer private graph
structures or node attributes.

o Malicious servers: This category represents a stronger
threat model with servers acting as active adversaries
that tamper with the training process by modifying model
parameters to expose client-specific subgraphs or inject
backdoors.

2) Client-side threats:

o Gradient inversion attacks: Adversaries seek to recon-
struct local graph data from shared model gradients.

« Membership inference: Adversaries attempt to determine
if a data sample participated in the training process based
on analysis of model output. The inference attempts can
be made on various components of a graph including
nodes, edges, attributes, or the whole graph [12].

V. TECHNICAL APPROACHES AND ARCHITECTURES
A. Data heterogeneity

Many approaches have been proposed to tackle the issue of
non-IID data partitioning in federated graph learning focusing
on developing personalized models that are better adapted
to the clients, ensuring better performance than having a
single global model [3]. This section discusses some of the
most prominent methods, dividing them into two groups:
clustering-based aggregation and global alignment-based
calibration. The underlying assumptions are different for the
two groups: clustering requires some notion of similarity,
while alignment methods assume global knowledge is avail-
able for calibration.

1) Clustering-based aggregation: Instead of training sep-
arate models on individual clients with potentially highly
divergent gradients, GCFL+ [10] is proposed with the main
idea of identifying clusters of similar clients in terms of graph
structures and node features. The core mechanism of GCFL+
is the dynamic clustering of clients based on local computed
gradients with a view to maximizing the collaboration of
homogeneous clients. Specifically, the notion of similarity
among clients is built upon the gradient series obtained from
multiple rounds of federated training. The coordinating server

maintains a time-series matrix () where each row is the
gradient series of a given client. Upon new gradients being sent
to the server after a round of training, @ is updated using the
norms of the new gradients. A distance matrix 3 is then built to
record the distances between pairs of gradient series, computed
using dynamic time warping [13]. The distance matrix is used
to construct fully connected graph where the clients are nodes
and the distances are edge weights, and the Stoer-Wagner
algorithm [14] is applied to bi-partition the graphs, effectively
obtaining the clusters. The gradients are aggregated by the
server cluster-wise, instead of across all participating clients.

While GCFL+ falls into the inter-graph category, FedCG
[15] is proposed as a cluster-driven method designed to
mitigate heterogeneity in graph-structured federated learn-
ing. Rather than assuming a single global model, FedCG
first identifies latent domains through unsupervised clustering,
performed locally at clients using a teacher-student domain
classifier. Each domain is assigned its own set of domain-
specific parameters, and clients are soft-assigned to one or
more domains. To enable cross-domain knowledge sharing,
FedCG builds a graph where nodes correspond to domains, and
edges encode similarity between domain-specific parameters.
A graph convolutional network [5] is then used to update these
domain parameters jointly, allowing information to flow across
clusters during training. This architecture effectively combines
clustering and representation smoothing to reduce the impact
of statistical heterogeneity.

2) Global alignment-based calibration: Recent works em-
phasize calibrating graph structural bias, employing techniques
such as graph structure distillation to align local adjacency
statistics with global ones. The following methods operate by
aligning local models to globally shared structures, which can
be embeddings, structural proxies, or parameter decomposi-
tions.

FGSSL [16] decouples heterogeneity into node-level se-
mantic bias and graph-level structural bias and proposes two
complementary mechanisms to tackle them. On the node-level,
local models are inclined to learn biased node representations
due to limited class coverage or skewed distribution. FGSSL
uses supervised contrastive learning to align local node embed-
dings with class-consistent global representations, effectively
countering semantic drift caused by non-IID class distributions
across clients. On the graph level, local graphs may be
structurally incomplete and contain misleading neighborhood
signals. To tackle this, FGSSL aligns similarity distributions
(rather than raw structure) of node neighborhoods from global
and local models. In other words, this approach utilizes the
aggregated neighborhood information available on the global
level to calibrate the local biased graph structure.

FedSpray [17] tackles the data heterogeneity in label dis-
tribution where nodes of the minority class in a client may
aggregate adverse neighborhood information. Instead of rely-
ing on potentially incomplete or biased local neighborhoods,
FedSpray introduces class-wise structure proxies, which are
representative embeddings capturing class-specific structural
information aggregated from all clients. These proxies act as



soft references, offering clients an external, unbiased sense
of how nodes in each class are typically structured. During
local training, each client’s personalized model is regularized
by aligning its predictions with the soft labels derived from
these structure proxies (obtained through a feature-structure
encoder taking the structure proxies and raw node features
as inputs), guiding it to conform to global relational patterns
while maintaining local adaptability.

FedHGN [18] tackles heterogeneity in federated learn-
ing of heterogeneous graph neural networks (HGNNs) by
decoupling schema-specific and schema-agnostic knowledge,
enabling aligned model updates without revealing private
graph schemas. In real-world federated HGNN settings, clients
oftentimes have distinct node and edge type definitions i.e.
different graph schemas due to varied data construction and
storage practices (for example, the same entity type may be
called ”paper” in one client and article” in another), leading
to schema mismatches and non-overlapping feature space.
Through schema-weight decoupling, each client can factorize
its HGNN parameters into basis weights that are shareable
with other clients and confidential coefficients, thus preserving
schema privacy while also enabling cross-client learning.

B. Missing cross-client information

To tackle the missing cross-client information issue, mul-
tiple approaches have been proposed to create augmented
subgraphs through constructing the missing edges, ensuring
higher quality of node representations and, to some extent,
mitigating the non-IID data partitioning problem [4]. This
section highlights some representative approaches with a ten-
tative division into three categories: local missing neighbors
augmentation, cross-client graph extension, and knowledge
graph embedding-based alignment.

1) Local missing neighbors augmentation: The methods
in this category address the challenge by directly generating
or imputing plausible missing neighbors within each client’s
subgraph, either before or during the graph neural network
training. These techniques enhance model expressiveness and
mitigate cross-client information loss without requiring direct
data sharing.

FedSage+ [19] proposes the addition of a missing neighbor
generator on each client. From the original graph, each client
creates an impaired graph by randomly holding out a number
of existing nodes and related edges. The Gaussian-based
generator then learns first to predict the number of missing
neighbors of a given node, then to reconstruct the features of
those missing neighbors. After augmenting the subgraph, the
client continues regular GraphSage [7] training and shares up-
dated model weights. While a foundational model, FedSage+
has a number of limitations such as the use of a simple node
generation mechanism with random masking. Such drawbacks
are addressed in later approaches building upon FedSage+.

FedNI [20] refines neighbor augmentation by moving from
simple reconstruction to inpainting utilizing generative adver-
sarial networks (GANs) [21], specifically spectral normalized
GAN [22]. Instead of random masking, FedNI removes nodes

along breadth-first search paths to simulate realistic missing
neighborhoods. After creating the impaired graph with masked
nodes, a graph convolutional network [5] is used to obtain
embeddings of the remaining nodes, which are then used as
inputs to a multilayer perceptron (MLP) to predict the number
of missing neighbors. At the same time, another MLP decoder
uses the node embeddings to generate realistic features for the
missing neighbors. An discriminator is implemented to guide
the node feature generator, ensuring that the generated features
as closely resemble the true masked neighbors as possible. As
FedNI was implemented for the domain of medical imaging,
to complement the complex nature of the disease population
network, an additional predictor is used to obtain phenotypic
information (i.e. human observable traits such as gender and
height), which is further used to predict the weights of edges
connecting generated missing nodes and known nodes.

FedDEP [23] advances upon the basis of FedSage+ by
generating multi-hop neighbors in embedding space, rather
than feature space, allowing richer context reconstruction.
Node embeddings are generated using a graph neural network
encoder in combination with a Bernoulli sampling mechanism
to help predicting representations of missing neighbors. It
further introduces prototype-based pseudo-federated learning
to reduce communication overhead and ensures privacy with
noise-free edge-level differential privacy. These enhancements
offer deeper, more efficient, and privacy-aware augmentation,
proving more robust than prior single-hop, feature-level gen-
erators.

2) Cross-client graph extension: Rather than relying solely
on local augmentation, cross-client graph extension methods
enable clients to supplement their subgraphs with structural
information obtained from other participants while preserving
privacy. These approaches facilitate cross-client collaboration
by extending graphs or sharing global structure insights in
a controlled, privacy-aware manner, effectively improving
representation quality under heterogeneity. This section dis-
cusses a number of representative approaches with regards to
their mechanisms for mending the local subgraphs, while the
privacy-preserving techniques employed will be discussed in
the next section.

DP-FedRec [24] enhances local graphs by privately expand-
ing connectivity using cross-client edges. DP-FedRec explores
the domain of recommendation systems where each client
owns a bipartite graph representing the purchasing interactions
among users and items (nodes) and the users’ ratings of items
(edge weights). The goal of cross-client graph extension is
to privately expand the subgraph with edges related to over-
lapping users between different clients. Specifically, clients
perform Private Set Intersection (PSI) to identify shared users
across subgraphs and selectively extend their graphs with k-
hop neighborhoods around these intersected users. The shared
edge information complements each client’s sparse view of the
global user-item graph, enabling a more accurate aggregation
of structural signals across clients.

FedGL [25] adopts a different strategy by generating a
global pseudo-graph at the server level through self-supervised



learning. Each client uploads local node embeddings and
prediction outputs, which the server uses to infer pseudo-
edges and pseudo-labels, effectively constructing a synthetic
global structure that reflects inter-client relationships without
needing raw data. FedGL relies on distilled global information
to indirectly guide clients toward a more coherent, less biased
understanding of the global graph. This approach is particu-
larly effective in semi-supervised or low-label settings, where
the pseudo-labels and connections serve to supplement both
structural and semantic gaps in local data.

FedGNN [26] and FedPerGNN [27] address the challenge
of missing user-item interactions by enabling clients to re-
cover high-order collaborative signals via a secure embedding-
sharing mechanism. Both of these approaches involve a third-
party server which handles graph expansion for clients. The
graph expansion protocol involves the following steps: (1)
the coordinating server issues a public key to all clients, (2)
each client encrypts its item IDs and uploads them along with
its user embedding to the third-party server, (3) the server
performs ciphertext matching to find overlapping items and
constructs anonymous high-order neighborhoods, and finally
(4) it returns the embeddings of these neighbors to the original
client to further facilitate local model training.

3) Knowledge graph embedding-based alignment: In fed-
erated settings involving knowledge graphs (KGs), clients
typically hold entity-relation triples that are locally complete
but globally fragmented, and often partially overlapping. To
enable learning meaningful global representations while pre-
serving structural semantics and client privacy, knowledge
graph embedding (KGE)-based methods align and aggregate
embedding spaces across clients. These methods focus on
coordinating entity and relation embeddings under varying de-
grees of overlap and sensitive structure, often using specialized
alignment architectures or privacy-preserving protocols.

FKGE [28] tackles the problem of embedding alignment
across distributed KGs by proposing a privacy-preserving
adversarial translation (PPAT) framework, built upon a revised
GAN architecture. It focuses on clients that share overlapping
entities and relations, and learns to translate embeddings
from one KG to another across these alignments. For each
pair of aligned KGs G} and G, the generator takes an
entity embedding from G} and maps it into the embedding
space of Gs. A student discriminator and multiple teacher
discriminators, each trained on local KGs, work together to
distinguish synthesized from real embeddings in Gg. This
adversarial mechanism forces the generator to produce high-
quality translations, ensuring consistent semantics across KGs.
FKGE incorporates differential privacy mechanisms in the
discriminator training to prevent inference on sensitive entities
or relations. The resulting system allows federated KGs to
collaboratively refine embedding quality without revealing raw
triples or embedding parameters.

FedE [29] focuses on aligning entity embeddings across
clients by introducing a shared entity table at the server that
records all unique entity embeddings received from clients.
During training, each client maintains local KG embeddings,

which are aligned to this global entity table. The server follows
the standard federated learning protocol to update global entity
embeddings based on local updates from participating clients.
After each round, the updated embeddings are redistributed to
clients, enabling consistency across learning. To enhance the
quality of the entity representations, FedE also incorporates
self-training with a contrastive learning loss, encouraging each
client to refine its embeddings by distinguishing between
positive and negative entity-relation pairs.

FedR [30] addresses privacy risks in federated KGE by
proposing to aggregate relation embeddings instead of entity
embeddings, based on the observation that relation embed-
dings carry less identifying information. Clients locally train
KG models and then upload their relation embeddings to the
server. To preserve privacy, these embeddings are protected
with Secure Aggregation, and the server constructs a relation
table using Private Set Union (PSU) to identify and align
shared relations. Since relation embeddings cannot be eas-
ily used to reconstruct entity-level structure, FedR provides
stronger privacy guarantees than entity-sharing approaches.
This design makes FedR particularly suitable for sensitive
domains where disclosing even partial entity structure could
lead to information leakage.

C. Privacy and structural confidentiality

This section discusses some of the most prominent privacy-
preserving techniques and mechanisms aiming to combat the
vulnerabilities presented in Section IV. Additionally, many of
the models that have been discussed up to this point will
also be re-evaluated under the privacy-preserving lens. In this
discussion, the privacy-preserving techniques are grouped into
three categories: perturbation, encryption, and obfuscation.

1) Perturbation-based methods: Perturbation techniques in
federated graph learning rely on the addition of randomized
noise or data mixing to disguise sensitive information in model
updates, providing a layer of protection against structural and
attribute inference attacks without requiring heavy crypto-
graphic overhead. In the graph learning settings, perturbation
targets not only node features but also topology and neighbor-
hood structure, which are increasingly vulnerable in federated
settings. The most commonly used specific techniques within
this category are local differential privacy (LDP) and global
differential privacy (DP) which introduce carefully calibrated
noise to model gradients or data, reducing the ability of
adversaries to reverse-engineer sensitive relationships from
updates.

FedNI [20] train two models under a federated settings:
the missing node generator and the graph convolutional net-
work for node classifier. Differential privacy is applied, with
Gaussian noise of mean 0 and standard deviation 0.01 being
added to the parameters of both models before they are sent
to the coordinating server. FedDEP [23] claims guaranteed
noise-free differential privacy on the edge level. This privacy
guarantee is attributed to the two phases of random sampling,
the first one being the random neighborhood sampling at each
layer of the graph convolutional network, and the second one



being the Bernoulli sampling mechanism in the neighbor em-
bedding generation process. DP-FedRec [24] first guarantees
the privacy of nodes that are not in the intersected user set
through the usage of Private Set Intersection. For the nodes
that are in the intersected set, Laplacian noise is added to
both the adjacency matrix and the edge weights with a view
to preserving privacy on both topology and edge information.
FedGNN [26] and FedPerGNN [27] apply local differential
privacy to locally computed gradients by adding zero-mean
Laplacian noise after clipping gradients based on a threshold
of L1-norm. FKGE [28] provides differential privacy guarantee
for generated gradients via the implementation of PATE-GAN
[31] in the student-teachers discriminators.

Perturbation-based approaches, particularly those leverag-
ing local differential privacy, offer practical defenses against
privacy attacks by adding calibrated noise to graph data or
model updates. As a trade-off between privacy and utility,
however, the intensity of noise directly impacts model quality.
As demonstrated in studies of general federated learning with
local differential privacy (e.g. [32]), reducing the privacy
parameter € (i.e. increasing privacy) typically incurs a notable
drop in utility, converging more slowly and achieving lower
accuracy at stringent privacy levels. Therefore, a balance
must be established between the strength of privacy guarantee
and the acceptable utility decrease to preserve both accuracy
and structural confidentiality in node embeddings and other
downstream tasks.

2) Encryption-based methods: Encryption-based methods
in federated graph learning utilize cryptographic schemes to
securely process sensitive graph elements during collaborative
learning. Privacy-preserving techniques within this category
can be further divided into homomorphic encryption-based
methods and secure multiparty computation-based methods.

Homomorphic encryption [33] allows arithmetic opera-
tions (addition or multiplication) to be performed directly
on ciphertexts. This ensures that sensitive embeddings or
adjacency vectors remain encrypted during transit and compu-
tation. FedGNN [26] and FedPerGNN [27] are two representa-
tive models that utilize homomorphic encryption as a privacy-
preserving mechanism. These approaches follow a protocol
with three steps:

1) Public key distribution: The coordinating (learning)
server issues a public key to all participating clients

2) Client-side encryption: Each client encrypts the sensitive
graph components (which, in the case of FedGNN and
FedPerGNN, are the private item IDs) and send to a
third-party server

3) Encrypted matching: The third-party server performs
matching based on ciphertexts sent by clients in order
to return anonymized structural information (neighbor
embeddings in the case of FedGNN and FedPerGNN)
without decrypting data

While homomorphic encryption ensures strong confiden-
tiality, it incurs significant computational and communica-
tion costs and typically requires trusted key infrastructures.

FedGNN and FedPerGNN both operate under the assump-
tion that the third-party server handling graph expansion is
trustworthy and cannot infer confidential information from
encrypted item IDs. However, if this server colludes with the
coordinating server by sharing the private key and the global
item table, the privacy guarantee will be broken and private
user information is at risk of being leaked.

Secure multiparty computation enables multiple parties to
evaluate a function over their inputs without revealing them,
often using techniques like secret sharing, garbled circuits, or
set operations. DP-FedRec [24] utilizes Private Set Intersection
[34] which allows two clients to obtain the set of shared users
while preserving the privacy of the users that do not belong to
the intersection set. FedR [30] applies Private Set Union [35]
on the relations received from clients in order to maintain a
global relation table without revealing relation ownership of
specific clients.

In graph-based settings, secure multiparty computation en-
ables secure computation of unions or matches of subgraph
elements (e.g. nodes, edges, neighborhoods) without disclos-
ing client-specific data. When paired with encryption and
differential privacy (e.g. in the case of DP-FedRec, differential
privacy is also used), such methods offer strong aggregate
privacy with manageable overhead.

3) Obfuscation-based methods: Obfuscation strategies aim
to conceal sensitive structural or interaction information
through selective data sampling or aggregation procedures.
Unlike perturbation methods which rely on noise addition or
encryption-based methods which use cryptographic primitives,
obfuscation mechanisms achieve privacy by hiding the pres-
ence or identity of sensitive graph elements. They are highly
effective in hiding which nodes or edges are present in a user’s
subgraph without necessarily altering raw data distributions.
Some prominent techniques include pseudo-node sampling
(clients introduce synthetic elements e.g. pseudo-interacted
items indistinguishable from real ones), ego-graph hybridiza-
tion (combining real neighborhoods with decoy structures),
or structure masking (a client mixes true edge connections
with random candidate links to obscure relationship identities).
Such strategies obscure structural features while still enabling
meaningful graph neural network training, and are particularly
salient in recommendation systems or social graph scenarios,
where revealing linkages is most sensitive.

FedGNN [26] and FedPerGNN [27] employ pseudo-
interacted item sampling as an obfuscation method. In the user-
item graph settings of these systems, the model update gradi-
ents can inadvertently reveal sensitive user history information,
since for a training round, only the items that a user has
interacted with have non-zero embedding gradients, allowing
the coordinating server to infer the interaction history of a
user. To uphold privacy, FedGNN and FedPerGNN randomly
sample an additional set of non-interacted items and generate
their embeddings using a Gaussian distribution mimicking
the mean and co-variance of the embeddings of real items.
While this approach provides good privacy guarantee, the
impact on performance is also to be taken into consideration.



Empirical results from [27] show that performance peaks when
no pseudo-interacted items are added and declines as sampling
is conducted since the generated gradients impact the accuracy
of item gradients. However, it was also observed that a larger
number of pseudo-interacted items leads to improvement since
their gradients are better counteracted after aggregation.

D. Summary

Table I presents a summary of the approaches that have been
discussed thus far, including the core challenge addressed,
the categorization of the approach, the privacy-preserving
mechanisms employed, as well as some additional information
on the data type and corresponding downstream task.

VI. APPLICATIONS

Federated learning and federated learning on graph-
structured data is emerging across diverse domains. This
section discusses some of the most promising applications
of federated graph learning in fields such as healthcare,
recommendation systems, computer vision, and finance.

A. Biomedical and healthcare

Biomedical data are often represented as graphs (e.g.
protein-protein interactions, patient similarity networks,
molecular structures). Such datasets, especially those involving
patients, are also extremely sensitive and private, necessitating
the isolated ownership of data by different hospitals, medi-
cal institutes, and research centers [3]. On the other hand,
scientific research can benefit immensely from an extended,
collaborative network utilizing cross-institute data. Therefore,
biomedical research and healthcare becomes a prominent field
for utilizing federated graph learning.

Federated patient graphs (with privacy constraints) are being
studied for disease prediction and classification tasks utilizing
networks of patients data and electronic health records (EHRs).
[36] federates across hospitals using fMRI spatio-temporal
graphs where client devices process each patient’s temporal
brain signal and share embeddings to a central graph con-
volutional network to predict diseases. [20] also explores the
task of disease prediction using cross-institutional population
graph, with experiments conducted on neuroimaging data
combined with phenotypic information. [37] proposed a feder-
ated graph learning settings using Protein-Protein Interaction
networks to represent unique patients for disease classification.
[38] tackles graph classification using temporal-spatial medical
data, specifically polysomnography recordings with different
channels being formulated as nodes. [39] explores the model-
agnostic meta-learning paradigm for training multi-task deep
learning models on federated EHRs. [40] utilizes federated
graph learning to improve local connectional brain template
representations by integrating cross-institutional multi-view
brain connectomic datasets. Drug discovery also immensely
benefits from federated graph learning, where multiple hos-
pitals or pharmaceutical companies could jointly train graph
neural networks on on molecular graphs without sharing
proprietary compounds. [41] integrates GAN and graph neural

networks in a federated manner to generate highly novel and
diverse molecular graphs. [42] jointly trains a graph neural
network for molecular property prediction utilizing molecular
graphs from multiple research labs.

B. Recommendation systems

Many recommendation models include multiple collabo-
rating clients possessing user-item bipartite graphs. Feder-
ated graph learning allows a natural framework for multiple
vendors to collaboratively improve recommendation quality.
As previously discussed, DP-FedRec [24], FedGNN [26],
and FedPerGNN [27] explore graph expansion strategies for
improving recommendations using user-item subgraphs. [43]
complements user-item interaction data with social links to
propose a recommendation system for social recommendation
and personalization. [44] proposes a vertical federated graph
neural network-based recommender system which allows joint
training when different parties hold disjoint features e.g. one
company has user graph, another has item graph. [45] explores
cross-domain recommendation allowing federated learning
across e-commerce domains (e.g. different product categories)
to transfer “positive knowledge” (embeddings) between do-
mains while filtering negative transfer.

C. Computer vision

Numerous applications in computer vision can be classified
as graph-structured federated learning where the clients (or
domains of data) are constructed as nodes with edges repre-
senting semantic connections among them [3], with [15] being
an example. In addition to image classification, applications in
video-based trajectory prediction are also emerging. [46] pro-
poses learning representations of objects from graph sequences
which represent inter-object relationships from video frames.

D. Finance

Graph-structured financial data (transaction networks, user-
vendor bipartite graphs, account graphs, etc.) often reside
across institutions. Federated graph learning enables banks
or retailers to collaboratively detect fraud without revealing
raw transactions. [47] explores the applicability of federated
graph learning in detecting money laundering activities using a
transaction graph representing money transfers among differ-
ent banks and a party relationship graph representing social
relationships of customers. [48] leverages graph-structured
data of digital currency transactions to identify malicious
transactions where the federated learning paradigm helps to
uphold user privacy.

VII. OPEN CHALLENGES AND FUTURE DIRECTIONS

This section presents some challenges in federated graph
learning that are open to improvement as well as some
subsequent future research directions.

o Scalability: Real-world graphs can have millions of
nodes, while existing literature usually rely on graphs of
smaller scale to simulate the federated settings. For large-
scale realistic graphs, increased communication overhead



TABLE I
SUMMARY OF DISCUSSED APPROACHES

Approach Privacy-preserving mechanism .
Approach Challenge addressed categorization Perturbation | Encryption | Obfuscation Client data Downstream task
GCFL+ Heterogeneity Clustenqg-based Multiple graphs Graph classification
aggregation
FedCG Heterogeneity C]usterm_g—based Latent domains Image classification
aggregation as nodes
. Global alignment . .
FGSSL Heterogeneity _based calibration A subgraph Node classification
. Global alignment ) .
FedSpray Heterogeneity _based calibration A graph Node classification
. Global alignment . .
FedHGN Heterogeneity -based calibration A subgraph Node classification
FedSage+ Mlssmg .CrOSS'Chem Local nelghbors A subgraph Node classification
information augmentation
FedNI Mlssmg Across-cllent Local nelghbors v A subgraph Node classification
information augmentation
FedDEP Mlssmg .cross—chent Local nelghbors v A subgraph Node classification
information augmentation
DP-FedRec Mlssmg .cross-chent Cross-client . v v A user-item graph | Rating prediction
information graph extension
FedGL Mlssmg Across—cllent Cross—cllentg A subgraph Node classification
information graph extension
FedGNN Missing cross-client Cross-client v v v A user-item graph | Rating prediction
information graph extension
FedPerGNN Mlssmg Across—cllent Cross-client . v v v A user-item graph | Rating prediction
information graph extension
FKGE Mlssmg ‘cross—chent KG emb;ddlng v A KG KG completion
information -based alignment
FedE Mlssmg .cross-chent KG embe@dlng A KG KG completion
information -based alignment
FedR Mlssmg Across—cllent KG embgddmg v A KG KG completion
information -based alignment

and failure-prone devices might introduce significant
bottlenecks. Future development is needed to explore
efficient sampling (e.g. neighbor sampling on-device),
communication compression, and failure recovery mech-
anism.

o Communication efficiency: This is an intertwining is-
sue along with scalability. Graph neural network feder-
ated learning involves exchanging large messages (node
embeddings, adjacency blocks, gradient matrices, etc.).
Reducing communication is critical, especially for large-
scale graphs distributed across clients located geographi-
cally far from one another. Potential approaches include
gradient quantization, sporadic update, or decentralized
gossip to avoid a bottleneck server.

o Decentralized protocols: Most federated graph learning
schemes assume a trusted coordinating server (and for
some previously discussed, an additional server for graph
expansion). Fully decentralized algorithms (e.g. based on
consensus or graph-based aggregation) remain largely un-
explored. Designing peer-to-peer graph neural networks
training that tolerates network delays and heterogeneity
is an open direction.

o Heterogeneity: Graph heterogeneity remains a deep chal-
lenge. While clustering or calibrating can alleviate some
issues, a unified theory is lacking. Future works can
further explore meta-learning or graph transfer learning
to adapt global models to local subgraph peculiarities.

o Security and robustness: Adversarial attacks on fed-
erated graph learning remain largely unexplored. While
privacy-preserving mechanisms have emerged, further
robustness-enhancing techniques need future research.
The reliance on one or more central servers also leaves
rooms for corrupted servers that might collude with
adversaries to infer sensitive data and graph structures.
Further fortification strategies for graph-specific compo-
nents remain an open research direction.

VIII. CONCLUSION

Federated graph learning has emerged as a powerful
paradigm for building high-performing, privacy-aware graph
models across distributed data silos owned by different organi-
zations. This paper synthesizes representative methods across
key dimensions including feature and structural heterogene-
ity, cross-client structural recovery, and privacy preservation.
Despite rapid progress, many challenges remain open in terms
of scalability, communication efficiency, heterogeneity, among
others. As interest grows in domains such as healthcare,
finance, and recommendation systems, federated graph learn-
ing is well positioned to yield real-world impact, but only
with thoughtful, systems-aware design and rigorous theoretical
grounding.
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